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1 Introduction

1.1 Importance
From the era of Ancient Greece to the modern day, five important 3-dimensional solids have cap-
tured the human imagination, playing an important role across various academic pursuits. These
five polyhedra, the Platonic Solids, have undoubtedly held a fundamental position in mathematical
inquiry. From Plato’s first postulation of their existence in his dialogue The Timaeus, to Euclid’s
exploration of their properties in his final book of The Elements–they’ve historically been objects
of Mathematical interest.

Still, while geometers have studied their mathematical beauty and unique symmetries for mil-
lennia, their influence isn’t only limited to Mathematics. They’ve also played an important role
in other fields. For example, in early Cosmology, Johannes Kepler used them to explore his first
model of the solar system, a step towards geometric classification of planetary movements that
lead to his discovery of the properties of elliptic orbits. Additionally, both Biology and Chemistry
make use of their properties and symmetries, through the study of virus morphologies and the
structures of the interactions of symmetric molecules respectively. Their implications don’t end
here; the Platonic Solids are undoubtedly important to study.

This paper serves to offer a mathematical overview of the classification of the symmetries of
the Platonic Solids, determining the symmetry groups of each polyhedron explicitly.

1.2 Foundational Background
First, it is important to precisely define the overarching mathematical concepts central to this
pursuit.

Definition 1.1 (Platonic Solids). A Platonic Solid is a regular, convex polyhedron, with con-
gruent faces, edges, and angles.

Figure 1: The five Platonic Solids.
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Interestingly, there are only five solids that satisfy these conditions: the tetrahedron, the cube,
the octahedron, the dodecahedron, and the icosahedron (Figure 1). Euclid rigorously proved that
these five polyhedra were the only Platonic Solids in the thirteenth book of his The Elements,
concluding this foundational treatise on Geometry.

Additionally, there are two types of symmetry groups of polyhedra that are fundamental to
classifying all symmetries of each Platonic Solid. Let X denote the solid under analysis.

Definition 1.2 (Rotational Symmetry Groups). The Rotational Symmetry Group of a poly-
hedron is the group of rotational symmetries of the rigid solid, denoted in this paper as SR(X).

Definition 1.3 (Full Symmetry Groups). On the other hand, the Full Symmetry Group of
a polyhedron, is the group of rotational and reflectional symmetries of the solid, denoted in this
paper as S(X).

1.3 Overview
Three propositions will be postulated and proved, directly relating to the effort of the classification
of these rotational and full symmetry groups for each Platonic Solid. They comprise the theorem
proved by this classification:

Theorem 1 (Symmetries of the Platonic Solids). The symmetries of the Platonic Solids are
classified by the following three statements:

1. Tetrahedra have a rotational symmetry group isomorphic to A4 and a total symmetry group
isomorphic to S4

2. Cubes and Octahedra have a rotational symmetry group isomorphic to S4 and a total sym-
metry group isomorphic to S4 × Z2

3. Dodecahedra and Icosahedra have a rotational symmetry group isomorphic to A5 and a total
symmetry group isomorphic to A5 × Z2

2 Simplifying Concepts

2.1 Relevant Properties of Polyhedra
Additional definitions, theorems, and lemmas offer important background relevant to the classifi-
cation by helping simplify the task of analyzing these symmetries.

Definition 2.1 (Symmetry Axes). The symmetry axes of a polyhedron are lines about which
the solid can be rotated by some angle such that the polyhedron’s new orientation is seemingly
identical to its starting position.

Definition 2.2 (Symmetry Planes). Similarly, symmetry planes of a polyhedron are external
two dimensional surfaces upon which reflection of the polyhedra returns a new orientation seemingly
identical to its starting position.

Definition 2.3 (Dual Polyhedra). The dual polyhedron of a regular solid is another polyhe-
dron such that the faces and vertices of the two occupy complementary locations. This can be
constructed by connecting the centers of each face of the solid, inscribing this new dual polyhedron
within the original solid.

Figure 2: The dual polyhedra pairs of all the Platonic Solids.
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Note that the dual of each Platonic Solid is also a platonic Solid. Tetrahedra are self-dual, or
dual to themselves, cubes and octohedra are dual, and dodecahedra and icosahedra are also dual
(Figure 2).

2.2 Relevant Lemma and Theorems
Using the above concepts, we can relate the symmetry groups of Platonic Solids that are dual:

Lemma 1. If two polyhedra are dual, then they share the same symmetry groups.

Proof. This follows directly from the observation that dual polyhedra share the same axes and
planes of symmetry.

Now, as dual solids–such as cubes and octohedra or dodecahedra and icosahedra–share the
same symmetry groups, all symmetry groups of the Platonic Solids can be determined once the
symmetry groups of tetrahedra, cubes, and dodecahedra are known.

Additionally, we can relate the full symmetry groups of cubes and dodecahedra with their
rotational symmetry groups, using the concept of a direct product and results from introductory
Group Theory.

First note Theorem 10.2. in Armstrong’s Groups and Symmetry, proved on page 54: If H
and K are subgroups of G for which HK = G, if they have only the identity element in common,
and if every element of H commutes with every element of K, then G is isomorphic to H ×K.

Relating these concepts and this theorem to the Full Symmetry Group of a solid, we have the
result:

Theorem 2. The full symmetry group, S(X), for some solid, X, is equal to the direct product of
the rotational symmetry group SR(X) and Z2.

Proof. Let fj : R3 → R3 be a central inversion, or function sending a vector x to -x. Note that,
aside from the tetrahedron, any regular solid centered around the origin has a reflectional symmetry
equal to this central inversion. Let G be the full symmetry group of X and H be the rotational
symmetry group of X. We know that 〈fj〉, the group generated by the central inversion, is also a
subgroup of G by the definition of G. Moreover, it shares only the identity element with H. We
can see that every element of G commutes with every element of H by first noting that elements
of H can be expressed a subgroup of the Orthonormal Matrix Group in three dimensions because
these matrices explicitly represent non-scaling rotations in three-space. Likewise, elements of G
can be expressed as a scalar multiple on that matrix of 1 or -1. Scalar-matrix multiplication is
commutative on these elements equivalent to rotations and reflections, so elements of G and H
must also commute. Thus, by Theorem 10.2 stated above, G is isomorphic to H × 〈fj〉. Now, all
we need to show is that 〈fj〉 is isomorphic to Z2. Let y be some element in 〈fj〉 and φ : 〈fj〉 → Z2

be an isomorphism defined as:

φ(y) =

{
0, y = x
1, y = -x

Clearly, φ is a bijection and it also satisfies the homomorphism criterion for all pairs of elements:
φ(0 + 0) = x = φ(0)φ(0), φ(0 + 1) = −x = φ(0)φ(1), and φ(1 + 1) = x = φ(1)φ(1). As such, there
exists an isomorphism between 〈fj〉 and Z2. Therefore, S(X) is isomorphic to SR(X) × Z2, and
the theorem holds.

By Lemma 1 and Theorem 2 above, our task has been reduced to only finding the rotational
and full symmetry groups of the tetrahedron and the rotational symmetry groups of the cube and
dodecahedron.

2.3 The Tetrahedron
Proposition 1. Tetrahedra have a rotational symmetry group isomorphic to A4 and a total sym-
metry group isomorphic to S4
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First, note that a tetrahedron has four vertices. For each permutation of these vertices, there
exists a symmetry in the total symmetry group. Specifically, the first vertex can take four different
positions. The second vertex can then end up in any of the three remaining positions via rotation.
The third vertex must then take any of the final two positions by reflection, and now the position
of the fourth vertex remains fixed. Therefore, under rotations and reflections, the Tetrahedron has
4 * 3 * 2 * 1 or 24 total symmetries. Observe that the order of S4, the Permutation Group of order
4, also has order 24.

Now, each vertex can be labeled from 1 to 4, and thus, permutations of vertex positions can be
expressed under cyclic notation. Using this notation, first the rotational symmetries can be listed
out. A tetrahedron has two axes of symmetry, one passing through the center of one face and the
vertex right above it, and another passing through the center of one edge and the perpendicular
edge adjacent to it (Figure 3). We can label these axes of symmetry as L and M , respectively.

Figure 3: The axes of symmetry of the Tetrahedron.

Clearly, an axis of type L permutes only three vertices, and thus all three cycles of the vertex
elements 1, 2, 3, and 4 describe rotations along such axes. Thus, the 8 possible three cycles (123),
(132), (124), (142), (134), (143), (234), and (243) correspond to the possible 120 degree symmetry
rotations. On the other hand, an axis of typeM permutes all four vertices, swapping them in pairs.
Thus, the three possible products of two disjoint transpositions, (12)(34), (13)(24), and (14)(23)
correspond to elements of the rotational symmetries wherein the solid is revolving 180 degrees.
The final rotational symmetry, the identity–not rotating the shape at all–corresponds to the cyclic
notation describing no permutations, (). Note that these 12 possible rotational symmetries directly
correspond to all even order elements of S4, otherwise known as the Alternating Group A4. Clearly
when two rotations r and r′ prompt permutations p and p′ respectively, their composed rotation rr′
prompts the permutation pp′, exhibiting a homomorphism. Moreover, the injective and surjective
mapping explicitly listed out above exhibits a bijection. Thus, via this correspondence, the group
of rotational symmetries of the Tetrahedron are isomorphic to A4.

On a similar note, the possible reflections of the tetrahedron can also be expressed using cyclic
notation. Note that the only possible tetrahedral plane of symmetry would intersect both the
midpoint of an edge and the opposite vertices of the two faces containing that edge. Equivalently,
a plane of symmetry must be spanned by any two L and M axes of symmetry, and would swap
any two vertices of the tetrahedron not contained in this plane. Thus all six transpositions of
S4, (12), (13), (14), (23), (24), and (34), correspond to a reflectional symmetry. Now, the only
elements that don’t correspond to a single reflection or rotation are remaining four cycles (1234),
(1243), (1324), (1342), (1423), and (1432). We can see that (1234) is equivalent to the product
(123)(34), and moreover, that the corresponding movement matches up with the composition of
a reflection and rotation on the solid. Similarly all other elements of S4 can be mapped to by
elements generated by rotations and reflections, and this map is thus surjective. Now, as all 24
elements of S4 map to the 24 possible rotation and reflection symmetries of the Tetrahedron, and
compositions of these elements directly correspond on both sides of the mapping, the full group of
symmetries is isomorphic to S4.
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2.4 The Cube and Octahedron
Proposition 2. Cubes and Octahedra have a rotational symmetry group isomorphic to S4 and a
total symmetry group isomorphic to S4 × Z2

Under rotational symmetries opposite vertices in a cube can be paired together, as for any rigid
rotation of a vertex in a cube, its opposite vertex must move accordingly to remain opposite. Thus,
in similar fashion to the argument for the number of total symmetries of a tetrahedron, we can
claim that the number of rotational symmetries of a cube is the number ways you can permute
these 4 pairs of vertices–if a rotation permuting all vertex couples can be found. Below, we will
show that rotations do permute every vertex; it follows that the number of rotational symmetries
is 24.

There exist three types of axes of symmetry on the cube (Figure 4). The first type, denoted
here as L, intersects the midpoint of two faces of the cube. There are three such axes, and each
allows three rotational symmetries, by 90, 180, and 270 degree rotations respectively. Thus there
exist nine rotations about L axes. Another axis type intersects the midpoint of two opposite edges,
denoted here as M . There are six such axes, and each has one rotational symmetry of 180 degrees,
so there are 6 rotations about M axes. Finally, the last axis type, denoted here as N , intersects
two opposite vertices, and there are 4 opposite vertex pairs as previously stated. On each N axis,
there are two allowed symmetries created by rotating the solid by 120 and 240 degrees. Thus, N
axes have 8 allowed rotations. In sum, all possible rotations–9, 6, and 8 for each axis type–plus
the identity add up to 24 symmetry elements.

Figure 4: The axes of symmetry of the cube.

Using this information, it is possible to show that group of rotations above is isomorphic to
S4. Numbering the corners on only one face of the cube from 1 to 4 allows us to then number
their corresponding opposite vertices from 1’ to 4’ respectively, differentiating the four permutable
constituents of the cube. Now, permutations of these elements directly correspond to permutations
in S4. Note how rotation about axis types L, M , and N return four cycles, transpositions, and
three cycles respectively. Additionally, observe how a product of two rotations clearly induces the
correct product of two permutations in S4 by analysis. A surjective correspondence is bijective if
it maps two sets of equal size and the number of rotations found above, 24, is exactly equal to the
number of elements in S4. Thus the group of rotations of the cube is isomorphic to S4.

Applying Lemma 1, as the rotational symmetry group of the cube is isomorphic to S4, the
rotational symmetry group of its dual, the octahedron, is also isomorphic to S4.

Now, by Theorem 2, the full symmetry groups of a cube and a octahedron must be isomorphic
to S4 × Z2.

2.5 The Dodecahedron and Icosahedron
Proposition 3. Dodecahedra and icosahedra have a rotational symmetry group isomorphic to A5

and a total symmetry group isomorphic to A5 × Z2
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First, in order to determine the number of rotational symmetries of the dodecahedron, we can
count the number of ways we can permute its vertices. Note that the solid has 20 vertices, and
each vertex is adjacent to 3 other vertices. Thus, there are 20 places to map our first vertex to.
Taking a second vertex that was adjacent to the first vertex, there are only new 3 adjacent spots
it can map to. Once two adjacent verities are fixed, all other vertices under a rigid transformation
are then determined; the number of possible rotations of the dodecahedron is 20 * 3 or 60. Observe
that this is equal to the order of A5.

Figure 5: Inscribed cubes of the dodecahedron.

Similar to the way rotations permute opposite pairs of vertices of the cube as noted above,
rotations of the dodecahedron permute five inscribed cubes amongst each other. Observe that
the edges of each cube are diagonals of every pentagonal face of the dodecahedron (Figure 5).
Moreover, each of the five possible diagonals on every pentagonal face corresponds to one of the
five inscribed permutable cubes. We can number each cube by numbering these diagonals on the
topmost face of the dodecahedron, starting at the nearest diagonal, and labeling them from 1 to 5
in a clockwise fashion–so that Figure 5 portrays the 5th diagonal and thus cube 5.

Now, note that the cube has axes of symmetry that intersect opposite vertices in pairs; there
are 10 such axes for the 20 vertices. Moreover, as each vertex connects three edges, and they must
map to each other in a rotational symmetry about that vertex, these axes have only 2 rotational
symmetry elements of 120 and 240 degrees. Therefore there are 20 total rotational symmetries
among these axes, and we can show they correspond to the 20 3-cycles in A5.

Choosing one such axes of symmetry, we can see that its rotations fix the two inscribed cubes
whose N axes (as labeled in the last section, Figure 4) intersect the same two vertices. Note that
the N axis has rotational symmetries of 120 and 240 degrees, equivalent to the rotations exhibited
by the dodecahedron we investigate. Now, there are three remaining inscribed cubes not-fixed by
rotations on each axes of symmetry and thus must be sent to each other. These cubes can be
represented by their numbered face diagonal per the labeling scheme above. Thus each rotation
among these axes directly corresponds to a permutation of three cubes, or a 3-cycle in S5. In fact,
as there exist 20 unique rotational symmetries along the 10 diagonals, 20 unique 3-cycles can be
expressed. There are a total of 20 unique 3-cycles possible in S5, so these rotational elements must
correspond to all 3-cycles in S5.

Finally, by Theorem 6.5 on page of Armstrong, for n ≥ 3 the 3-cycles generate An, so all
the 3-cycle permutations mapped to in S5 generate A5. This is clearly a homomorphism, as
combinations of rotations clearly correspond to associated permutation groups in A5 by definition.
Moreover, the map criteria described above details a bijection; it is surjective as all elements in A5

could be mapped to by Theorem 6.5, and both sets have order 60 as shown at the start of this
section. Thus there exists an isomorphism between A5 and the rotational symmetry group of the
dodecahedron.

Applying Lemma 1, as the rotational symmetry group of the dodecahedron is isomorphic to
A5, the rotational symmetry group of its dual, the icosahedron, is also isomorphic to A5.

Now, by Theorem 2, the Full Symmetry Groups of a dodecahedron and a icosahedron must
be isomorphic to A5 × Z2.

3 Conclusion
The task of classifying the symmetry groups of the Platonic solids was greatly reduced by the
concepts of dual polyhedra and central inversion. Tetrahedra were found to have a rotational
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symmetry group isomorphic to A4 and a total symmetry group isomorphic to S4. Cubes and octa-
hedra have a rotational symmetry group isomorphic to S4 and a total symmetry group isomorphic
to S4 × Z2. Finally, dodecahedra and icosahedra have a rotational symmetry group isomorphic
to A5 and a total symmetry group isomorphic to A5 × Z2, completing the classification of these
symmetries.
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