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1.  Introduction 
 

The frontiers of neuroscience, especially with recent advances in Brain Machine Interface (BMI) 
technology, have become increasingly focused on neurosensing–or technologies that deduce the presence 
and locations of firing neurons. Traditionally, methods for this electrophysiology require very invasive 
optical techniques–like electrode arrays or patch-clamp recordings–to return quantitative data on the 
firing of action potentials.  However, recently, the Palanker Lab in the Hansen Experimental Physics 
Laboratory at Stanford has successfully proven the applicability of interferometric imaging of neurons as 
a noninvasive optical alternative to traditional electrophysiology [1]. These experiments can be 
considered the advent of optophysiology–allowing greater spatial and temporal resolution and lower 
barriers to implementation–which has the potential to revolutionize neurosensing in the future [2]. 

Currently humans fail to easily detect the changes in the interferometric images corresponding to 
action potential events in neurons–creating an excellent opportunity for the application of automated 
detection algorithms. This research proposes and compares a machine learning based solutions for the 
classification of this new type of neuron imaging data.  The input to our algorithm is a set of 40 by 40 
interferometric frames with values of the optical phase shift of one cell. We then compare the relative 
accuracies of different types of neural networks to output a prediction for whether or not an action 
potential is firing in any given frame–testing the viability of this new type of data classification.  

 
2.  Related Work  
 

As this research focuses on neurosensing methodologies that are breaking new ground, to date 
there is not yet literature on this classification task with this interferogram data type.  However, there does 
exist data processing research as well as a few machine learning papers especially in the field of 
interferograms tangentially related to this topic.  Indeed, studies on optophysioloy for the use of cell 
classification, especially Claire Chen’s 2016 paper in Nature on “Deep Learning in Label-free Cell 
Classification” show the applicability of machine learning for the classification of 
interferograms--achieving greatest classification success with Deep Neural Networks (DNNs) [3]. 
However, this existing optophysiology classification research serves to only classify different types of 
cells from each other across macro level cellular properties, whereas neurosensing optophysiology 
distinguishes between significantly smaller differences amongst cells themselves.  Additionally, other 
classification tasks using one dimensional interferometric frames with values of the optical phase 

 



shift--from lethal bioagent detection to aberrations and astigmatisms in human eye tissue--indicate 
success with DNNs as well as Convolutional Neural Networks (CNNs) [4,5].  Still, no papers detect 
interferometric frames in time or classify data with a comparable signal-to-noise ratio.  

The first techniques coming out of The Palanker Lab employ the binning of many frames over 
long spans of time (and cellular activity) to increase the legibility of action potential interferograms. Then, 
manually predetermined action potential templates are compared with the binned optical recording for 
manual detection. This sacrifices both temporal resolution and algorithmic generalizability.  
  
3.  Dataset 
 

We used a dataset of 100,000 frames of interferograms containing over 3,000 recorded neural 
spiking events--with each action potential corresponding to approximately 15 subsequent frames.  This 
data was kindly provided by Professor Daniel Palanker’s lab with the help of P.hD. candidate Kevin 
Boyle [6].  Each ‘pixel’ value of the interferogram contained a single angular displacement value 
measured in milliradians that measured the optical phase shift values of the cell under analysis.  

Data processing involved first splitting videos of interferograms into individual frames, and 
reducing their resolution to a 40 by 40 matrix by bin averaging--allowing quicker training and iteration 
cycles to optimize models more efficiently. (Figure 1) These matrices were then unrolled into 1600 
feature long vectors corresponding to each frame.  Feature normalization was then conducted on each 
pixel by subtracting the mean from each value and then dividing by the standard deviation--allowing for 
faster convergence while training.  
 

   
Figure 1. Two interferogram frames from our dataset visualizing the readout over the single cell.  

Left: No action potential event.  Right: Action potential event--emphasized to an almost ~600 nm deformation for 
human legibility 

 
All frames in the original dataset were labeled with electrical data indicative of the depolarisation 

characteristic of the electrical ion influx during an action potential.  Thus, in order to label each feature 
vector with a ground truth for our classification task, electrical activity exceeding the action potential 
threshold was mapped to binary values classifying the presence of spiking event.  Data was verified to be 
well-balanced, with exactly 47.98% positively labeled frames--allowing accuracy on the test set to to be 
meaningful evaluation metric.  

 



After equally processing all data, resulting in a 100,000 by 1,601 matrix, individual data points 
were randomly assigned using a predetermined random seed into train, validation, and test sets with an 
80-10-10 split. 
 
4.  Methods  
 
4.1.  Baseline (Logistic Regression)  
 

To first establish our baseline we started by implementing an unregularized Logistic Regression 
model. Logistic Regression is a classification algorithm that works by learning a function that 
approximates P(Y = 1 | X = x). It makes the central assumption that P(Y = 1| X = x) can be approximated 
as a sigmoid function applied to a linear combination of input features: 
 
 
 
 
Because the range of the sigmoid function is 0 to 1, it is especially useful for models that predict 
probability as an output.  

In order to improve the algorithm’s generalizability, we added regularization to the Logistic 
Regression model to compare performance.  

 
4.2.  Traditional Neural Networks 
 

Neural Networks compute systems with multiple layers similar to logistic regression that learn 
features through model optimization to more effectively perform classification. In order to ultimately 
select the optimal architecture, we implemented three neural networks with different numbers of hidden 
layers. The impact of varying the number of hidden layers (two, three, and nine) on an NN’s performance 
is discussed in detail in Section 5.  

Throughout the process of training our models, we consistently used ReLU activation function in 
hidden layers (100 neurons each), and sigmoid function in the output layer (binary). ReLU is linear for all 
positive values, and zero for all negative values, which both induces sparsity and prevents the vanishing 
gradient issue, allowing the model to converge faster. 
 
4.3. CNN 

 
Convolutional Neural Networks are deep neural networks with the same methodology as above 

that include intermittent “convolutional”  and “pooling layers.”  They have proven to perform consistently 
better on image classification tasks as compared to traditional neural networks.  The practical benefit is 
that a CNN looks only at a small patch of the image, and thus has to learn fewer parameters which in turn 
significantly reduces the learning and training time required by a model--providing a deep learning 
comparison point. 

 
5. Experiments/Results/Discussion 

 



 
Our primary metrics included accuracy, precision, recall, F1-score, as well as confusion matrix - a 

categorical representation of the accuracy of a model with two or more classes. 
Classification accuracy is the number of correct predictions out of all predictions made. Precision is the 
number of correctly predicted positive values out of all values predicted to be positive. Recall refers to the 
percentage of total relevant results correctly classified by the algorithm. F1 score is the weighted average 
of precision and recall, which thus takes both false positives and false negatives into account.  
 
5.1. Baseline (Logistic Regression) 
 

The baseline unregularized logistic regression model achieved training set accuracy of 0.739, 
validation set accuracy of 0.731, precision of 0.748, recall of 0.645, and F-Score of 0.693. 

Due to the large number of inputs to our model, we decided to regularize the logistic regression 
model. We chose the value of the parameter, C, from a grid of values ranging between 1.0 and 10.0 using 
cross-validation with 3 folds The optimal regularization parameter (C = 2.5) was calculated using grid 
search (.GridSearchCV in scikit-learn library), yielding training set accuracy of 0.750, validation set 
accuracy of 0.744, precision of 0.761, recall of 0.663, and F-Score of 0.708. We notice that the 
regularized logistic regression model is a slight improvement upon its unregularized version.  
 
5.2. Traditional Neural Networks 
 

For the sake of consistency, we chose to hold the activation functions, number of epochs and 
batch size constant for all neural network models. We chose 30 epochs – rather than hundreds or 
thousands, which are typically recommended – due to our limited computational power available and the 
amount of time required to train neural networks with such large numbers of epochs. We chose a batch 
size of 5000 to be approximately 10% of our training data size (the optimal batch size was calculated 
using a grid search). As mentioned earlier, we used the ReLU activation function for input and all hidden 
layers, and the sigmoid activation function for the output layers.  
  

Models trained for 25 epochs 
Training 
Accuracy 

Test Set 
Accuracy 

Test Set 
Precision 

Test Set 
Recall 

Test Set 
F-Score 

Logistic Regression 0.739 0.731 0.748 0.645 0.693 

Regularized 
Logistic Reg.  
(C = 2.5) 

0.750 0.744 0.761 0.663 0.708 

Neural Net 
(2 layers) 

0.787 0.783 0.823 0.682 0.746 

Neural Net 
(3 layers) 

0.788 0.783 0.801 0.715 0.756 

 



Neural Net 
(9 layers) 

0.815 0.822 0.882 0.718 0.791 

CNN 0.777 0.777 0.859 0.661 0.726 

Table 1. Results of primary metrics for all models. 
As anticipated, the NN with nine hidden layers exceeded all other models tested on every 

evaluation metrics (see Table 2), while the difference in performance between the models with two and 
three hidden layers was negligible. This being the case, we expect deeper neural nets to yield greater 
success for this classification task in the future.  

TN: 2427 FP: 225 

FN: 663 TP: 1685 

Table 2. Confusion matrix for NN with nine hidden layers. 
 
5.3. CNN 
 

Through the use of maximum pooling as our pooling operation, we down sampled our feature 
map in such a way that it highlighted only the most prominent features in each patch. After extensive 
experimentation with different architectures and configurations of pooling layers, we found that the use of 
max pooling layers consistently resulted in the CNN’s better overall performance. 
 
6.  Conclusion/Future Work 
 

All of our models produced results that outperformed our baseline unregularized logistic 
regression model; however, the neural network model with 9 hidden layers performed the best overall, 
even better than the CNN. In fact, all three of the neural network models – with 2, 3, and 9 hidden layers 
– performed better than the CNN. This signals that further work could be done to tune the parameters of 
the CNN model, given more time and resources. 

Additionally, while we’re currently fitting our network to a quite uniform data type – with only 
one firing cell present – experimenting  with different configurations of cell organization, action potential 
events with mitigated deformation, and increased interferogram resolution are areas we’re excited to 
explore with additional datasets from the Palanker Lab in the hopes that our research can create a 
generalized model for different neurosensing scenarios. Given more time and computational resources, 
we would be interested in exploring regularized neural networks/CNN and further fine-tuning our 
hyperparameters through testing different combinations of activation functions, varying the number and 
configuration of hidden layers, and experimenting with greater numbers of epochs (i.e. hundreds or 
thousands) as well as smaller batch sizes. 
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