# Stanford University

# **Neurobiologically Inspired Encoding and Transfer Learning**

George Sivulka (gsivulka), Satchel Grant (grantsrb) Josh Melander; The Baccus Lab at Stanford University

# Predicting

**Computational Neuroscience:** the feedback loop between neuroscience discovery and machine learning breakthroughs

Present Research: a transfer learning method employing the computations and mechanisms of the human retina as an encoder for time-dependent visual stimulus --analyzing their efficacy in video classification tasks.



#### Methods

Fully Convolutional Loss: As part of the effort to make the Deep Retina model Fully Convolutional (see right pane) a "semantic loss" regularizer [2] was employed. This ensured that a selection matrix during training was "one-hot," selecting only one cell per learned filter, so the filter could capture its dynamics.

> $\mathcal{L}(\text{one-hot}, \forall P_c \text{ filters}) = -\beta \sum_{i=1}^c \log \sum_{j=1}^n p_j \prod_{k=1, k \neq j}^n (1-p_k)$  $p_i = \frac{|w_i|}{\sum_{i=1}^n w_i} \quad \forall \; w_i \subseteq W_c \text{ of each } c \text{ channel}$

# **Biological Encoding (CNN)**

Aa CNN model of retinal spiking: (Deep Retina) trained on 40 binned 10ms frames of a natural movie labeled with experimentally measured neural spiking.

Fully Convolutional: to investigate encoding problems the fully convolutional model learns a filter from one cell type generalizable to all locations on an input.

**Deep Retina** (limited in cell type, quantity)

#### FULLY CONVOLUTIONAL (FC) DEEP RETINA PARADIGM

FC Deep Retina @ Training



FC Deep Retina: **Encoding Use** Cases



## Features (Output Encodings)

FC DR Output : Encodings from the filters of two learned retinal cells



# **Encoding Classification (RNN)**

Schematic of the LSTM architecture with input (X) frame bins first encoded by Deep Retina. Video classification (y) is performed on a FC-layer's output of the final internal units (h) of the LSTM.







# Synthetic Video Data

Synthesized videos of simple artificial stimuli known to evoke retinal response--allowing for a proof of concept first pass at this transfer learning system



### **Synthetic Classification Results**



### UCF-11 Video Data



# **UCF-11 Classification Results**

#### TRAINABLE UNTRAINED DR



#### **FROZEN PRETRAINED DR (!)**















# Discussion

Synthetic classification yields almost perfect accuracy across the board, as expected

- **Pretrained DR learns faster** and both trainable and untrainable DR models have the least stochasticity
- UCF-11 classification is more difficult, yet DR outperforms Frozen DR weights have higher accuracy, quicker learning
- Trainable random init doesn't seem to learn at all



# **Future Work**

Future work efforts will focus on rectifying validation and training discrepancies, further analyzing UCF-11 performance, and applying these encodings to RL and Meta-RL tasks.





# Acknowledgements

This research would not be possible without the assistance of Josh Melander of The Baccus Lab at Stanford.

## References

[1] McIntosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., & Baccus, S. (2016). Deep learning models of the retinal response to natural scenes. In Advances in neural information processing systems (pp. 1369-1377).

[2] Xu, J., Zhang, Z., Friedman, T., Liang, Y., & Broeck, G. V. D. (2017). A semantic loss function for deep learning with symbolic knowledge. arXiv preprint arXiv:1711.11157.